当前位置: 观测器 >> 观测器介绍 >> 西屋电气传动涨姿势变频器的这些基础知识
文章中在讲解变频器的技术发展时,为了让更多人了解变频器是什么,简单讲解了一下变频器的基本原理、构成与作用,今天我们来看一下变频器的其他基础知识:变频器的分类、给定方式与控制方式。
变频器分类1.按输入电压等级分类
变频器按输入电压等级可分低压变频器和高压变频器,低压变频器国内常见的有单相V变频器、三相V变频器、i相80V变频器。高压变频器常见有6kV、10kV变压器,控制方式一般是按高低一高变频器或高一高变频器方式进行变换的。
2.按变换频率的方法分类
变频器按频率变换的方法分为交-交型变频器和交-直交型变频器。
交-交型变频器
交-交型变频器可将工频交流电直接转换成频率、电压均可以控制的交流,然后将其供给电动机,故称直接式变频器。由于没有中间环节,交一-交变频器的变换效率高、过载能力强。由于此种变频器连续可调的频率范围窄,其频率一般在额定频率的1/2以下,故它主要用于低速、大容量的拖动系统中。
交-直交型变频器。
交直-交型变频器则是先把工频交流电通过整流装置转变成直流电,然后再把直流电变换成频率、电压均可以调节的交流电,故又称为间接型变频器。由于把直流电逆变成交流电的环节比较容易控制,因此交一直一交变频器在频率调节范围较宽,在改善频率后电动机的特性等方面都有明显的优势。目前,此种变频器的结构是普及应用最广泛的一种变频器,广泛用于通用型变频器中。
.按直流电源的性质分类
在交-直-交型变频器中,按主电路电源变换成直流电源的过程中,直流电源的性质分为电压型变频器和电流型变频器。
电压型变频器
在电压型变频器中,其主回路直流环节所采用的储能元件,是大电解电容器。由于采用电解电容进行滤波,缓冲负载的无功功率,直流环节输出直流电压波形比较平坦、电源内阻较小,在理想情况下,可以看成是一个内阻为零的电压源。
电压型变频器输出电压波形为矩形波或阶梯波,输出电流波形近似正弦波。常用在负载电压变化较大的场合。
电流型变频器
在电流型变频器中,其主回路直流环节所采用的储能元件为串联电感器。由于采用电感器进行滤波,输出直流电流波形比较平直。电源内阻抗很大,可以缓冲负载的无功功率,即扼制电流的变化,使电压接近正弦波,对负载来说基本上是个电流源,所以称为电流型变频器。电流型变频器输出电流波形为矩形波,输出电压波形近似正弦波。
在电流型变频器中,电动机定子电压的控制是通过检测电压后,对电流进行控制的方式来实现的。电流型变频器的一大优势是可以进行四象限运行,将能量回馈给电网;可扼制负载电流频繁而急剧的变化,特别是对负载电流较大时仍能适应。
这种方式适用于负载电流变化较大的场合,并适用于需要回馈制动和频繁可逆运转的生产机械中。
4.按输出电压的调制方式分类
在交一直一交变频器中,根据输出电压的调制方式的不同,可以将变频器分为正弦波脉宽调制(PWM)变频器和脉幅调制(PAM)变频器。
正弦波脉宽调制(PWM)变频器
正弦波脉宽调制(PWM)变频器在逆变电路部分同时对输出电压的幅值和频率进行控制。在这种方式中,PWM变频器以较高的频率对逆变电路的半导体开关器件进行开闭控制,并通过改变输出脉冲的占空比来控制输出电压的大小。
PWM变频器的特点:功率因数高,调节速度快输出电压和电流波形接近正弦波,改善了由矩形波弓
起的电动机发热、转矩降低等电动机运行性能。变频器目前普遍应用的是占空比按正弦波规律变化的正弦波脉宽调制方式。
正弦波脉宽调制(PWM)变频器适用于单台或多台电动机并联运行、动态性能要求高的调速系统。
脉幅调制(PAM)变频器
脉幅调制(PAM)变频器将"变压”和“变频”分开完成,即在整流电路部分对输出电压的幅值进行控制,而在逆变电路部分对输出频率进行控制。因为在脉幅调制(PAM)变频器中逆变电路换流器件的开关频率即为该变频器的输出频率,所以这是一种同步调速方式。在这种方式下,当系统低速运行时,谐波和噪声都比较大。
这两种变频器的区别在于;PAM变频器调速要采用可控整流器,并要对可控整流器进行导通角控制;而PWM变频器调速则采用不可控整流器,工作时无须对整流器进行控制。
变频器的给定方式变频器常见的频率给定方式主要有:操作器键盘给定、接点信号给定、模拟信号给定、脉冲信号给定和通讯方式给定等。这些频率给定方式各有优缺点,必须按照实际的需要进行选择设置,同时也可以根据功能需要选择不同频率给定方式进行叠加和切换。
变频器的控制方式低压通用变频输出电压为80~V,输出功率为0.75~kW,工作频率为0~Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。
1.正弦脉宽调制(SPWM)控制方式
其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。
2.电压空间矢量(SVPWM)控制方式
它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。
.矢量控制(VC)方式
矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。
4.直接转矩控制(DTC)方式
年,德国鲁尔大学的DePenbrock教授首次提出了直接转矩控制变频技术。该技术在很大程度上解决了上述矢量控制的不足,并以新颖的控制思想、简洁明了的系统结构、优良的动静态性能得到了迅速发展。该技术已成功地应用在电力机车牵引的大功率交流传动上。直接转矩控制直接在定子坐标系下分析交流电动机的数学模型,控制电动机的磁链和转矩。它不需要将交流电动机等效为直流电动机,因而省去了矢量旋转变换中的许多复杂计算;它不需要模仿直流电动机的控制,也不需要为解耦而简化交流电动机的数学模型。
VVVF变频、矢量控制变频、直接转矩控制变频都是交—直—交变频中的一种。其共同缺点是输入功率因数低,谐波电流大,直流电路需要大的储能电容,再生能量又不能反馈回电网,即不能进行四象限运行。为此,矩阵式交—交变频应运而生。
矩阵式交—交控制方式
由于矩阵式交—交变频省去了中间直流环节,从而省去了体积大、价格贵的电解电容。它能实现功率因数为l,输入电流为正弦且能四象限运行,系统的功率密度大。该技术虽尚未成熟,但仍吸引着众多的学者深入研究。其实质不是间接的控制电流、磁链等量,而是把转矩直接作为被控制量来实现的。具体方法是:
1、控制定子磁链引入定子磁链观测器,实现无速度传感器方式;
2、自动识别(ID)依靠精确的电机数学模型,对电机参数自动识别;
、算出实际值对应定子阻抗、互感、磁饱和因素、惯量等算出实际的转矩、定子磁链、转子速度进行实时控制;
4、实现Band—Band控制按磁链和转矩的Band—Band控制产生PWM信号,对逆变器开关状态进行控制。
矩阵式交—交变频具有快速的转矩响应(2ms),很高的速度精度(±2%,无PG反馈),高转矩精度(+%);同时还具有较高的起动转矩及高转矩精度,尤其在低速时(包括0速度时),可输出%~%转矩。